
Building Advanced Coverage-guided Fuzzer

for Program Binaries

NGUYEN Anh Quynh <aquynh@gmail.com>
WEI Lei

17/11/2017

Zero Nights, Moscow 2017

mailto:aquynh@gmail.com

Self-introduction

• NGUYEN Anh Quynh, PhD <aquynh @ gmail.com>
• Nanyang Technological University

• Operating System, Virtual Machine, Binary Analysis, etc

• Reverse trilogy: Capstone, Unicorn & Keystone

• WEI Lei, PhD
• Nanyang Technological University

• ~ 60 CVEs in Adobe, Apple, PHP etc

• ~ 50 bug bounties from iDefense VCP, TippingPoint ZDI, and HackerOne.

Agenda

• Coverage-guided fuzzer
• Background

• Issues of public guided fuzzers

• Darko fuzzer
• Features

• Design & Implementation

• Demo & bugs found

• Conclusions

Coverage-guided Fuzzer

Fuzzer

• Automated software testing technique to find bugs

• Feed craft input data to the program under test

• Monitor for errors like crash/hang/memory leaking

• Focus more on exploitable errors like memory corruption, info leaking

• Maximize code coverage to find bugs

• Blackbox fuzzing

• Whitebox fuzzing

• Graybox fuzzing

Coverage-guided fuzzer

• Instrument target binary to collect coverage info

• Mutate the input to maximize the coverage

• Repeat above steps to find bugs

• Proved to be very effective

• Easier to use/setup & found a lot of bugs

• Trending in fuzzing technology

• American Fuzzy Lop (AFL) really changed the game

Public guided fuzzers
• AFL

• Requires source code for instrumentation build

• Supports *nix binary via emulation mode (Qemu)

• AFL-Cygwin

• AFL ported to Windows via Cygwin

• Slow, buggy & development stalled

• WinAFL

• Windows fork – needs persistent mode support

• AFL-Dyninst

• Static-based instrumentation struggle on complicated binaries

• No Windows support

Problems of public guided fuzzers
• Poor support for fuzzing binary

• AFL emulation mode based on QEMU is limited

• Only support Linux

• Limitation of QEMU user mode emulation

• Only WinAFL handles Windows closed source binaries

• Tricky to use

• WinAFL persistent mode is really painful

• Suffer on performance & stability

• DynamoRio is slow & fails to work on some large binaries

• Needs persistent mode to perform well

DARKO Fuzzer

Darko design

• Motivation: no coverage-guided fuzzer for Windows (Dec 2015)

• Fork AFL fuzzing code & ported to Windows (Apr 2016)

• Rewrite to work with our target instrumentation

• Support closed source binary for all platforms & architectures

• To have a cross-platform/architecture fuzzer

• Build our own instrumentation from scratch (Apr 2016)

• Replaced with SKORPIO – multi-arch / platform (2017)

• Support selective binary fuzzing

• Support persistent mode

• Various other enhancements to AFL (2017)

Darko features

• Pure software-based

• Cross-platform/architecture

• Native compiled (MSVC on Windows, GCC/Clang on *nix)

• Binary support

• Full & selective binary fuzzing + Persistent mode

• Fast + stable

• Stable & support all kind of binaries

• Order of magnitude faster than DBI/Emulation approaches

Darko implementation – Overview

• AFL-compatible instrumentation

• PoC: AFL-Cygwin + PIN Probe mode (Apr 2016)

• Applicable to user-space 32-bit Windows binaries

• Flexible test case post-processor

• Found bugs in Adobe Reader, Windows Journal, etc

• Static analysis + dynamic binary rewriting (SMC)

• Speed much better than full binary DBI

• Near native execution speed, ASLR / threading compatible

• Support Windows, Linux & MacOS

• Support for non-X86 architectures underway

Challenges in static analysis

• CFG recovery: correctness v.s. completeness

• Differentiate data (globals, vftables, jump tables) from code

• Current effective instrumentation rate: > 60%

• Rely on IDA Pro to handle compilers & optimizations

• Scalability

• Tested & works well on Adobe Reader modules (< 10MB - 30MB)

• For certain compilers, still have FP+ (e.g., mshtml.dll, ~25MB)

Instrumentation

Dynamic instrumentation

• Lesson learned from fuzzers based on DBI (Pin/DynamoRio)

• Unstable & unreliable

• Limitation on platforms & architectures

• Poor performance

• Cannot do selective instrumentation

• Hooking based mechanism

• Lightweight & selective

• Offline analysis on where to instrument

• Handled with static analysis (beforehand)

Dynamic instrumentation (2)

SKORPIO instrumentation engine

• Cross-platform: Windows, MacOS, Linux, BSD, etc

• Cross architecture: X86, ARM, ARM64, Mips, PowerPC, Sparc

• Multi-level

• Userspace & OS kernel

• Instruction level (vs typical function-entry-only)

• Lightweight

• Implemented in pure C, focus on low-level hooking mechanism

• Super fast: can be 100x faster than available public hooking

frameworks - thanks to many optimization

SKORPIO engine (2)

• Decode instructions at hooking place

• Use Capstone disassembler (X86, ARM, ARM64, Mips, Sparc, PPC, ...)

• Binary rewrite on code relocation

• Use Keystone assembler (X86, ARM, ARM64, Mips, Sparc, PPC, …)

• Install user-provided callback at instrumentation hook

• Enable customization/optimization for all requirements

• Hooking types (JMP or CALL, RET or naked callback)

• Trampoline setting

• Thread & internal memory management (OS-agnostic)

Windows instrumentation
• Inject instrumentation into target binary

• Instrumentation comes in DLL form

• DLLMain() runs before main program

• Considered Dynamic DLL injection, but rejected

• Not portable

• Static inject DLL file into target binary

• Analyze target PE file to locate Sections & Import Directory

• Append 1 section to relocate Import Directory

• Point Import Directory Table to the new appended section

• Append a new entry for injected DLL

Linux & MacOS instrumentation

• LD_PRELOAD to dynamically inject instrumentation

• Take place before main program runs

• Linux: shared object file (.so)

• MacOS: dynamic library (.dylib)

• Inject all instrumentation at initialisation time

• Can be up to 100k hooks, so must do as quickly as possible

• Inject forkserver at program entry-point, so it takes over later

Detect heap memory corruption

• Windows

• Enable PageHeap for fuzzing target

• Low-level exception handling from Windows core

• MacOS & Linux

• Built-in memory debugging for better control & performance

• Overload malloc(), free() & co

• Utilize MMU to detect overflow/underflow errors

• Off-by-one error

• Use-after-free error

Demo & bugs found

Some results
• PoC (Apr 2016): AFL-Cygwin + Intel PIN probe

• Adobe Reader U3D: 2 unique bugs in 10 hours
• CVE-2016-1116: Adobe Reader DC U3D e3_node OOB Access Vulnerability

• Able to quickly rediscover 12+ bugs on older version:

• CVE-2014-0523: Adobe Reader U3D Model Node Arbitrary Free Vulnerability

• CVE-2014-0565: Adobe Reader U3D Line Set Continuation Memory Corruption

• CVE-2014-9165: Adobe Reader U3D New Object Block Use-after-Free Vulnerability

• CVE-2015-5586: Adobe Reader U3D Node Blocks Arbitrary Free Memory Corruption

• CVE-2015-6683: Adobe Reader U3D Bone Weight Modifier Use-after-Free Vulnerability

• CVE-2016-0933: Adobe Reader DC U3D Bone Weight Modifier OOB Access Vulnerability

• CVE-2016-1037: Adobe Reader DC U3D Line Set Continuation OOB Access Vulnerability

• More … (will release the repros on GitHub)

• Libxml2-2.7.8.win32 – 10 unique bugs in a week

• Windows Journal – some bugs

Experiments

• Libxml2 – native, not compatible with persistent mode

• Native run with persistent mode:

• UnRAR – persistent mode + parallel fuzzing

• Msxml6 – persistent mode + parallel fuzzing

• Adobe Reader – Javascript engine

• Adobe Reader 3D

Demos - libxml2.dll

Demos - unrar.exe

Demos - afl-tmin.exe

Demos - afl-analyze.exe

Demos - AFL -Q (Linux) vs Darko

Demos - Darko vs AFL native on MacOS

Demos - MacOS

Conclusions

• DARKO is an advanced coverage-guided fuzzer

• Pure software-based

• Cross-platform/architecture

• Binary support

• Fuzz full binary + Persistent mode

• Fast + stable

• SKORPIO engine will be released to public in near future

Building Advanced Coverage-guided Fuzzer

for Program Binaries

NGUYEN Anh Quynh <aquynh@gmail.com>

WEI Lei

Questions?

mailto:aquynh@gmail.com

