
Demigod: The Art
of Emulating

Kernel Rootkits

NGUYEN Anh Quynh
NGUYEN Hong Quang

DO Minh Tuan

Blackhat USA
August 5th, 2020

www.groundx.io/demigod

NGUYEN Anh Quynh

About us
- Nanyang Technological University,

Singapore. PhD in Computer
Science

- Operating System, Virtualization,
Binary analysis, etc

- Frequent speaker of Blackhat
USA/EU/Asia, Defcon, Recon,
Syscan, HackInTheBox, etc

- Founder of few open source
reverse engineering frameworks:
Capstone, Unicorn & Keystone.

- Contact: aquynh @ gmail.com

NGUYEN Hong Quang

About us - Security Researcher at Viettel
Cyber Security (VCS)

- Interested in Fuzzing and Exploits
- I would like to thank my wife & my

children. Without them, I would
finish this research few months
earlier ;-)

- Contact: quangnh89 @
gmail.com

DO Minh Tuan

About us - Security Researcher at CyStack., JSC
- Interested in Fuzzing and Exploits
- BabyPhD CTF team’s member
- Speaker at Blackhat USA/Asia, T2,

XCon, etc
- Contact: tuanit96 @ gmail.com

Agenda
● Background & Motivation
● Design & Implementation

○ Cross-platform framework
○ Windows
○ MacOS
○ Linux

● Demos
● More applications of Demigod
● Conclusion

Background & Motivations

Kernel Rootkit
➢ Computer system = Userland (ring 3) + OS Kernel (ring 0)

○ Kernel operates at lowest level, with full control on whole system
➢ Malware run inside kernel

○ God-mode code, with full power
○ Can fool all monitoring & defensive mechanisms
○ Very hard to detect & kill

■ Can be creative with lots of tricks to evade detection
■ Can even kill or fool any anti-malware tools

○ Mostly come in the form of kernel modules/drivers
■ Easy to build & maintain + high compatibility
■ Windows: .SYS file
■ MacOS: .KEXT file
■ Linux LKM: .KO file

Analyze Kernel Rootkit
➢ Goal: analyze rootkits in kernel modules/drivers

○ .SYS, .KEXT, .KO
➢ Dynamic analysis is troublesome

○ Need 2 machines (physical or virtual)
■ One machine to load kernel rootkits
■ Another machine to run analysis tools

● Remote debugger
○ Crash machine
○ Low visibility when kernel run at very low level
○ Few tools built for kernel-level analysis

➢ Static analysis
○ Packed code?
○ Inaccurate analysis

■ Real kernel setting depends on config
● Kernel modules are blind

■ Missing API

Better Tool for Kernel Rootkits?
➢ Analyze ring 0 code in ring 3?

○ No more machine crash
○ No more headache of setting up separate machines, or virtual machines
○ No more risk with kernel level malware
○ Good visibility
○ Existing tools can be reused

■ Monitor, trace, debug, etc
➢ Cross-platform-architecture analysis

○ Analyze Windows kernel rootkits on Linux - and vice versa
○ Analyze Arm rootkits on X86 would be fun ;-)

➢ High-level language scripting is possible - such as Python
○ So it is quick & efficient to build new analysis tools

Emulator Approach
➢ Emulate OS kernel in software, so kernel modules/drivers can be run inside

○ Emulator runs in ring 3
■ No more machine crash
■ No more headache of setting up separate machines, or virtual machines
■ No more risk with kernel level malware
■ Existing tools can be reused

○ Excellent visibility since we can all execution code
■ Instrumentation at various levels

➢ Cross-platform-architecture analysis
○ Cross-platform-architecture emulator

➢ High-level language scripting is possible - such as Python
○ Emulator as framework
○ Python-based emulator ;-)

Design of Demigod

Qiling Emulator (qiling.io)
➢ Emulator - for userland code only

○ Cross-platforms: Windows, MacOS, Linux
○ Cross-architectures: X86, Arm, Arm64, Mips
○ Multiple executable formats: PE, MachO, ELF
○ Python-based framework
○ Instrumentation at various levels
○ Emulate system API (userland)
○ Enable debugging (with GDB server)

➢ Cannot handle kernel code → so cannot emulate kernel rootkis
○ Loaders for kernel modules are different from userland binaries

■ Different format structures
○ Do not emulate kernel components
○ Do not emulate kernel API
○ Kernel module has different execution scheme

■ Load vs Serve request from userland

Emulator for Kernel Rootkits - 1
➢ Build on top of Qiling!

○ Reuse the excellent frameworks with many ready features
■ Loader + little modification
■ Symbol relocation
■ Imported functions

○ Emulate kernel components
○ Emulate kernel API by hooking & emulate its semantics

■ Sometimes we can forward to kernel code (PASS-THRU)
○ Instrument memory access and code execution for dynamic analysis

■ System API hooking
■ Automatic alloc/map missing memory to enable continuous execution

○ Facility to assist dynamic analysis
■ Reuse Qiling GDB server for debugging

Emulator for Kernel Rootkits - 2
➢ Userland code is typically just 1 phase emulation
➢ Kernel driver is 2-phase scheme

○ Driver needs to be loaded first, then it stays in kernel to serve user request
○ Emulate driver entry

■ Locate entry to emulate
● Windows: DriverEntry
● MacOS: realmain
● Linux: module_init

■ During emulation, extract code paths for next phase
● Rootkit syscalls
● IOCTL callbacks
● Other registered callbacks

○ Emulating selected code paths
■ User choose which code path to emulate

● Input provided by user

Windows

Windows Overview
➢ Windows kernel

○ Kernel image: ntoskrnl.exe
■ cache manager
■ executive
■ kernel
■ security reference monitor
■ memory manager
■ Scheduler

○ Driver: .SYS
■ Portable Executable (PE) format
■ Subsystem: native

➢ Goal: emulate kernel rootkit in .SYS driver

Load .SYS File

➢ PE loader for .SYS file
○ Parse all sections of PE file and map all sections into emulator
○ Resolve Import Address Table and load all dependent DLLs into emulator.
○ Relocation

➢ Setup CPU context
○ Common registers (RSP, ….)
○ Control registers (CR4, CR8…)

➢ Initialize Windows structures
○ EPROCESS, DRIVER_OBJECT, KUSER_SHARED_DATA, ..
○ Setup IMAGE_LOAD_CONFIG_DIRECTORY: SecurityCookie value

➢ Locate initialization function
○ NTSTATUS NTAPI DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath);

Windows Internal Structures

➢ DRIVER_OBJECT
○ represent image of a loaded kernel-mode driver.

➢ IRP
○ represent an I/O request packet.

➢ KUSER_SHARED_DATA
○ data structure which is shared between user mode and kernel mode.

➢ IO_STACK_LOCATION
○ define an I/O stack location

➢ MDL
○ partially opaque structure that represents a memory descriptor list (MDL).

Emulating Driver Initialization

➢ Setup arguments of DriverEntry():
○ 1st argument: A pointer to a DRIVER_OBJECT structure (driver object)
○ 2nd argument: A pointer to a UNICODE_STRING structure (path to driver registry).

➢ Emulate from DriverEntry
○ Emulate Windows API functions

■ CreateIoDevice
■ CreateSymbolicLink

Hook Windows Kernel APIs
➢ Emulate some Windows APIs necessary

for driver to work
○ RtlInitUnicodeString
○ IoCreateDevice, IofCompleteRequest
○ Memory management:

■ ExAllocatePool / ExFreePool
■ ExAllocatePoolWithTag /

ExFreePoolWithTag
○ MmGetSystemRoutineAddress
○ Runtime functions (strcpy, wcscpy, …)
○ Registry functions: NtOpenKey, …
○ Thread functions:

PsCreateSystemThread
○ Object functions: ObfDereferenceObject,

ObOpenObjectByPointer

Emulate Code Path

➢ Userspace communicates with driver via IOCTL code (DeviceIoControl) or ReadFile/WriteFile
○ Create structures in memory

■ IRP
■ IO_STACK_LOCATION, IO_STACK_LOCATION_PARAM

○ Fill all structures with appropriate data
○ Setup arguments for callbacks:

■ IRP_MJ_DEVICE_CONTROL
■ IRP_MJ_READ/IRP_MJ_WRITE

○ Start emulate callbacks
○ On return, determine NTSTATUS value & return data.

■ Retrieve IRP structure from emulator memory

Windows I/O methods
➢ BUFFERED_IO

○ Create a large enough buffer and assign address of buffer to irp.AssociatedIrp.SystemBuffer

➢ DIRECT_IO

○ Create a buffer to store data

○ Create a MDL structure

■ MappedSystemVa == StartVa == address of buffer

■ ByteCount = size of buffer

➢ NEITHER_IO

○ UserBuffer field of IRP structure points to address of buffer

Demigod Tools

❖ dm-unpack.py: A tool to unpack kernel mode packer
➢ Dump PE file from emulator environment to file
➢ Add new section to store Import Address Table (IAT)
➢ Rebuild Import Address Table

■ Find all call/jmp to possible IAT function pointers
■ Verify pointers by checking export address table of other modules

❖ dm-ioctl-reverse.py: a tool to help when working with IOCTL codes
➢ Bruteforce emulation to find IOCTL from binary
➢ Check and count all basic blocks

Demo: Debug Windows driver

➢ Setup:
○ Enable gdb mode

■ ql.debugger = True
■ ql.debugger= ":9999"

➢ Execute script
➢ Connect IDA to port 9999 & trace
➢ Demo:

https://youtu.be/5Tzc0rMfYSg

https://youtu.be/5Tzc0rMfYSg

Sality malware

➢ Sality is a polymorphic file infector, targeting Windows executable files
➢ Communicate over a peer-to-peer (P2P) network to form a botnet
➢ Rootkit module

○ Terminate processes via NtTerminateProcess
○ Block access to some anti-virus resources

➢ Sample available
○ Fae6b86d04f93bcad7736d88beff90f1278c3e3d786a25fc45c9ef2ee375df0f

➢ Demo: https://youtu.be/ID4cZpWnwkw

https://youtu.be/ID4cZpWnwkw

Demo: Debug Sality rootkit

MacOS

MacOS Overview
➢ XNU, hybrid kernel

○ Mach-O x86_64 executable file
○ Kernel Programming Interface (KPI)
○ All implementation code of KPIs are inside

➢ Kernel extension (KEXT):
○ Born to be a bundle
○ Load in on-demand by kernel
○ Extra attributes come from plist file

➢ Goal: emulate kernel rootkit in KEXT

Load KEXT
➢ Load all SEGMENT64s of kernel & KEXT to

emulator
➢ Kernel extension (KEXT)

○ Resolve local relocations
○ Resolve dynamic symbols:

■ Create jmp code section
■ Get symbol address from loaded

kernel
○ Retrieve initial methods/functions addresses

■ IOKit: ::start()
■ Generic driver: __realmain

Emulating KEXT Initialization
➢ Initialize kernel environment

○ Setup MAC policy list
■ Allocate new object in emulator
■ Fill the address on loaded mac_policy_list symbol on kernel space

○ Create some default processes
■ Allocate new objects in emulator
■ Link them by LIST/SLIST structure
■ Fill the addresses on loaded allproc symbol on kernel space

○ Make some vnodes, current credential, …
➢ Run emulation for pre-process methods / functions

○ IOKit: attach(), probe(), …
○ Generic driver: kmod_info, …

➢ Emulate from entry point of driver

Instrument KPI
➢ Map every KPIs to user-defined hook

methods
○ Simplify features
○ Use native functions

➢ Interact with real environment
○ getattrlistbulks(): retrieve attributes from

a path, then pack the result by calling
vfs_attr_pack() KPI

➢ Syscall emulation
○ Get sysent from kernel
○ Assign arguments to registers & run

corresponding syscall entry address

Nested Emulation
➢ Call to a native KPI from a hooked KPI

○ Need to save current context to emulate
new code path

○ Solution
■ Construct junk code
■ Push address of junk code to stack
■ Return

➢ The junk code has 3 missions
○ Prepare arguments (registers / stack)
○ Add RSP to clear arguments if necessary
○ Jump to address of that KPI

Emulate Code Path
➢ User “talks” to driver through callbacks
➢ Solution

○ Event Management System (EMS)
○ Hook KPIs to collect callback functions
○ Emulate callbacks by user trigger specific

events
➢ From Asynchronous system to

Synchronous system
○ Load driver
○ EMS collect callbacks from driver
○ User choose to trigger an event with

customzed inputs

Event Management System - SYSCTL
➢ Hook sysctl_register_oid() to register

SYSCTL events
○ Retrieve name of handler from struct
○ Retrieve callback & commit to EMS

➢ Hook sysctl_unregister_oid() to
unregister events from EMS

➢ Hook sysctl_root() to trigger event from
EMS

➢ User pass input as a sysctlbyname_args
object to sysctlbyname()
○ sysctlbyname() converts input to some

structs
○ sysctl_root() take structs & trigger event

Event Management System - NKE
➢ Hook ctl_register() to register NKE

events
○ Retrieve name of ctl instance from

struct
○ Check if callbacks are valid, then

commit to EMS
○ Store address of struct to ctl_ref

➢ Hook ctl_deregister() to unregister
events from EMS
○ Get name from struct stored in ctl_ref

➢ User creates socket object and mbuf
data to trigger NKE event

Event Management System - Network Filter
➢ Hook sflt_register() or ipf_addv4() to

register NETWORK events
○ Retrieve name from struct
○ Retrieve callback & commit to EMS

➢ Hook sflt_unregister() to deregister the
events from EMS

➢ User creates a fake source and
destination of transition
○ Need to get cookie before create

connection
➢ Use scapy to create packet with custom

layers (Ether / IP / TCP) & pack to
mbuf_t, then trigger the event.

Event Management System - MAC policy
➢ Hook mac_policy_register() to register

MAC events
○ Retrieve name from struct
○ Check if callbacks are valid, then commit

to EMS
○ Update mac_policy_list symbol in kernel

space
○ Trigger event mpo_policy_init &

mpo_policy_initbsd
➢ Hook mac_policy_unregister() to

unregister events from EMS
➢ User triggers some events

Event Management System - KAuth
➢ Hook kauth_listen_scope() to KAuth

events
○ Retrieve identifier from struct
○ Retrieve callback and commit to EMS

➢ Hook kauth_unlisten_scope() to
unregister events from EMS

➢ User triggers some events
KAUTH_FILEOP_OPEN,
KAUTH_FILEOP_CLOSE, ...

Rubilyn Rootkit
➢ Released on full disclosure in 2012

○ Grant root access to pid
○ Hide files / folders by hooking getdirentries64()
○ Hide a process
○ Hide an user from ‘who’ / ‘w’
○ Hide a network port from netstat
○ Sysctl interface for userland control
○ Execute a binary through ICMP ping

Rubilyn Rootkit: new Generation
➢ Problems

○ Failed to load on MacOS High Sierra and later.
○ Hide files / folders by hooking getdirentries64()

■ “ls” applications now uses getattrlistbulk()
■ Interrupt Descriptor Table (IDT) is located on another page
■ Syscall Table memory is read-only

○ Execute a binary through ICMP ping → Data structure now is different
➢ Solution

○ Use saved RIP and step back to find kernel base
○ Scan syscall handlers to find sysent
○ Modify cr0 register to overwrite entries in sysent
○ Re-construct ICMP packet based on new structures

➢ Demo: https://youtu.be/k5vfZUTX3sM

https://youtu.be/k5vfZUTX3sM

https://docs.google.com/file/d/1FK-Y_nD-CNbpsWqFJi-Dq-X57V4P8XN3/preview

Emulate Rubilyn
➢ Load the rootkit and emulate its initial functions from __realmain symbol.
➢ Register sysctl handlers on Event Management System
➢ Build some network, process objects, ...
➢ User pass inputs to trigger code path of rootkit’s features
➢ Demo: https://youtu.be/99QiLnmjBYE

https://youtu.be/99QiLnmjBYE

https://docs.google.com/file/d/1Zoy9UcDBW-WLSvETetwNsEpnYXpML_Cv/preview

Analyze Rubilyn: Debug
➢ Enable gdb server on emulator

○ Use --gdb “:<port>” option
➢ Connect gdb remotely to gdb server

○ target remote <address>:<port>
➢ Debug Rubilyn with gdb

○ Set breakpoints: b *<address>
○ Step next, step inside: si, ni, …
○ Continue: c

➢ Demo: https://youtu.be/vSJjF9IG6Ck

https://youtu.be/vSJjF9IG6Ck

https://docs.google.com/file/d/1a3gEuezisDz62p43cOWy87kgqsiYO9R8/preview

Linux

Linux Overview
➢ Linux kernel

○ System calls play key roles to provide services
○ Also interface with userland via IOCTL
○ Various callbacks indirectly triggered by

userland
■ File operations, etc

○ Kernel module in LKM: .KO
■ ELF format, but all in sections

● No program headers
➢ Goal: emulate kernel rootkit in .KO driver

Load LKM File (.KO)

➢ ELF loader for .KO file
○ Parse all sections of ELF file and map all sections into emulator
○ Resolve external API to provide our own implementation.
○ Relocate external functions and symbols (data)

➢ Setup CPU context
○ GS segment (current_task)

➢ Initialize Linux syscall table
○ Write address of our own syscall implementation into syscall table
○ Hook syscalls to execute our syscall implementation

➢ Locate initialization function
○ init_module symbol in SYMTAB section

Linux Internal Structures

➢ task_struct
○ Information for userland tasks.

➢ file_operations
○ Callback to file operations (read/write/open/close/etc)

➢ module
○ Information about LKM, with links to all modules

➢ user_namespace
○ Access to user credentials

➢ file_struct
○ Files accessed by process

➢ linux_direntXX
○ Directory information

Emulating LKM Initialization

➢ Setup optional arguments for init_module entry
○ Ignored when LKM is loaded without arguments
○ Similar to input arguments for sys_init_module

■ Buffer point to LKM arguments & total length
➢ Emulate from init_module

○ Stop emulation when reaching RET

Hook Linux Kernel APIs
➢ Emulate some APIs necessary for LKM to

work
○ __fentry__
○ __x86_indirect_thunk_rax
○ __stack_chk_fail
○ _copy_to_user, _copy_from_user
○ kmalloc, kfree
○ Device management

■ misc_register, misc_deregister
■ register_chrdev
■ device_create
■

○ Syscalls
■ sys_read, sys_write, sys_open
■ prepare_creds, commit_creds
■ etc

Emulate Code Path

➢ Extract syscalls or callbacks from LKM loading phase
➢ Pass input arguments provided by users via registers

○ SYSV ABI

➢ Userspace communicates with LKM via syscalls or IOCTL
○ READ, WRITE, OPEN syscalls
○ IOCTL syscalls

➢ Other special interfaces
○ proc_file_fops for /proc access

■ Emulate .read, .write
○ nf_hook_ops for netfilter access (monitor network packets).

■ Emulate .hook
○ notifier_block to access to keystrokes (keylogger)

■ Emulate .notifier_call

Demo: Linux m0hamed Rootkit
➢ Load in as LKM (rootkit.ko)
➢ A proof-of-concept kernel rootkit, with typical rootkit behaviors

○ Hide kernel modules (and itself)
○ Hide files
○ Hide network ports
○ Grant root access to current process (backdoor)
○ Overwrite syscalls: READ, WRITE, OPEN, CLOSE
○ Interface with userland customized file in /proc

➢ Code available
○ https://github.com/m0hamed/lkm-rootkit

➢ Demo
○ Load rootkit & initialize it
○ Retrieve address of rootkit’s WRITE syscall
○ Emulate rootkit WRITE syscall directly, with selected input
○ Trace execution with debugger of IDA

https://github.com/m0hamed/lkm-rootkit

Demo: Debug m0hamed Rootkit

More Applications of Demigod
➢ Debug kernel rootkits in ring 3, within safety sandbox

○ IDA Pro, GDB client, Binary Ninja etc
➢ Auto-unpacker for kernel code

○ Trace kernel code to detect the time code is unpacked, then dump & auto rebuild binary
➢ IOCTL analyzer

○ Auto-discover IOCTL code & callbacks using random inputs
➢ Auto-summarize rootkit behaviors to produce high-level reports

○ Auto-discover different rootkit code paths, and summarize its behavior according to rules
○ Demigod enable save execution on checkpoints, taking snapshots, etc

➢ Some other exciting private ideas ;-)

Status & Future work
➢ Supported Windows, MacOS & Linux kernel rootkits
➢ Still need to test & improve to support more rootkits

○ More kernel API
○ More syscalls
○ More kernel subsystems
○ Emulating enough features of real OS is hard & long-term project

➢ Support more platforms?
○ iOS, Android, etc

➢ To be merged into Qiling emulator soon
○ Watch out https://groundx.io/demigod for more announcement

Conclusions
➢ Demigod is a framework to emulate kernel rootkits

○ Enable analyzing ring 0 code from ring 3, in safety sandbox
■ Monitor, trace, debug, etc

○ Built on top of the excellent Qiling.io emulator
○ Cross-platforms: Windows, MacOS & Linux
○ Cross-architectures: X86, Arm, Arm64, Mips

➢ Enable advanced binary analysis of kernel code
○ Python-based framework for tool building
○ Instrumentation at various levels

➢ Release to be announced on groundx.io/demigod
○ To be merged into Qiling.io very soon

https://groundx.io/demigod

Q & A
Demigod: The Art of Emulating Kernel Rootkits
NGUYEN Anh Quynh <aquynh @ gmail.com>

NGUYEN Hong Quang <quangnh89 @ gmail.com>

DO Minh Tuan <tuanit96 @ gmail.com>

